Как переводить из двоичной в шестнадцатеричную систему

Как переводить из двоичной в шестнадцатеричную систему

Сайт СТУДОПЕДИЯ проводит ОПРОС! Прими участие 🙂 — нам важно ваше мнение.

Перевод чисел из шестнадцатеричной системы в десятичную

Преобразование десятичных чисел в двоичные

Допустим, нам нужно перевести число 19 в двоичное. Вы можете воспользоваться следующей процедурой :

19 /2 = 9 с остатком 19 /2 = 4 c остатком 14 /2 = 2 с остатком 02 /2 = 1 с остатком 01 /2 = 0 с остатком 1

Шестнадцатеричная система счисления (шестнадцатеричные числа) — позиционная система счисления по целочисленному основанию 16. Обычно в качестве шестнадцатеричных цифр используются десятичные цифры от 0 до 9 и латинские буквы от A до F для обозначения цифр от 10 до 15 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F).

Широко используется в низкоуровневом программировании и вообще в компьютерной документации, поскольку в современных компьютерах минимальной единицей памяти является 8-битный байт, значения которого удобно записывать двумя шестнадцатеричными цифрами. Такое использование началось с системы IBM/360, где вся документация использовала шестнадцатеричную систему, в то время как в документации других компьютерных систем того времени (даже с 8-битными символами, как, например, PDP-11 или БЭСМ-6) использовали восьмеричную систему.

В стандарте Юникода номер символа принято записывать в шестнадцатеричном виде, используя не менее 4 цифр (при необходимости — с ведущими нулями).

Для перевода шестнадцатеричного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания шестнадцатеричной системы счисления на соответствующие цифры в разрядах шестнадцатеричного числа.

Например, требуется перевести шестнадцатеричное число 5A3 в десятичное. В этом числе 3 цифры. В соответствии с вышеуказанным правилом представим его в виде суммы степеней с основанием 16:

5A316=3·16 0 +10·16 1 +5·16 2
=3·1+10·16+5·256=3+160+1280=144310

Для перевода многозначного двоичного числа в шестнадцатеричную систему нужно разбить его на тетрады справа налево и заменить каждую тетраду соответствующей шестнадцатеричной цифрой.

0101101000112=0101 1010 0011=5A316

Таблица перевода чисел

hex = dec = oct
1hex = 1dec = 1oct
2hex = 2dec = 2oct
3hex = 3dec = 3oct
4hex = 4dec = 4oct
5hex = 5dec = 5oct
6hex = 6dec = 6oct
7hex = 7dec = 7oct
8hex = 8dec = 10oct
9hex = 9dec = 11oct
Ahex = 10dec = 12oct
Bhex = 11dec = 13oct
Chex = 12dec = 14oct
Dhex = 13dec = 15oct
Ehex = 14dec = 16oct
Fhex = 15dec = 17oct

Двенадцатеричная система счисления — позиционная система счисления с целочисленным основанием 12. Используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B. Существует другая система обозначения, где для недостающих цифр используют не A и B, а t от (англ. ten десять) и e (от англ. eleven одиннадцать).

Число 12 могло бы быть очень удобным основанием системы счисления, так как оно делится без остатка на 2, 3, 4 и 6. Число же 10 — основание десятеричной системы счисления без остатка делится лишь на 2 и 5.

Двенадцатеричная система счисления возникла в древнем Шумере. Предполагается, что такая система возникала исходя из количества фаланг пальцев на руке при подсчёте их большим пальцем той же руки. Фаланги пальцев использовались как простейшие счёты (текущее состояние счёта засекалось большим пальцем), вместо загибания пальцев, принятого в европейской цивилизации. Некоторые народы Нигерии и Тибета используют двенадцатеричную систему счисления в настоящее время.

Читайте также:  Провод соединяющий ноутбук и телевизор

Так же существует гипотеза, что до 12 считали сидя, загибая не только 10 пальцев рук, но и 2 ноги. Хотя, возможно такое случалось, когда европейцам приходилось сталкиваться с восточным двенадцатеричным счётом.

Двенадцатые доли часто встречались и в европейских системах мер. У римлян стандартной дробью была унция (1/12). 1 английский пенс = 1/12 шиллинга, 1 дюйм = 1/12 фута и т. д.

Переход на двенадцатеричную систему счисления предлагался неоднократно. В XVII веке её сторонником был знаменитый французский естествоиспытатель Бюффон. Вольтер в «Истории Карла XII» утверждает, что этот монарх готовил указ о переходе на двенадцатеричную систему [1] . Во времена Великой французской революции была учреждена «Революционная комиссия по весам и мерам», которая длительный период рассматривала подобный проект, однако усилиями Лагранжа и других противников реформы дело удалось свернуть. В 1944 году было организовано «Двенадцатеричное общество Америки» (The Duodecimal Society of America), объединившее активных сторонников одноимённой системы счисления. Однако, главным аргументом против этого всегда служили огромные затраты и неизбежная путаница при переходе.

Элементом двенадцатеричной системы в современности может служить счёт дюжинами. Первые три степени числа 12 имеют собственные названия:

· 1 дюжина = 12 штук

· 1 гросс = 12 дюжин = 144 штуки

· 1 масса = 12 гроссов = 1728 штук

ASCII (англ. American Standard Code for Information Interchange — американский стандартный код для обмена информацией; по-американски произносится [э́ски], тогда как в Великобритании чаще произносится [а́ски]; по-русски произносится также [а́ски] или [аски́]).

ASCII представляет собой кодировку для представления десятичных цифр, латинского и национального алфавитов, знаков препинания и управляющих символов. Изначально разработанная как 7-битная, с широким распространением 8-битного байта ASCII стала восприниматься как половина 8-битной. В компьютерах обычно используют расширения ASCII с задействоваyной второй половиной байта

| следующая лекция ==>
Преобразование двоичных чисел в десятичные | Кодировка

Дата добавления: 2014-01-04 ; Просмотров: 889 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Для этого типа операций существует упрощенный алгоритм.

Д ля шестнадцатеричной — разбиваем на квартеты, преобразуем по таблице.

В таблице показано соответствие двоичных чисел шестнадцатеричным цифрам. Большое двоичное число можно легко выразить с помощью шестнадцатеричных цифр.

Например, двоичное число 10101011100101111000011011100101 может быть легко представлено шестнадцатеричным значением АВ9786Е5:

0010 1001 1010→ 29A(16)

Перевод из шестнадцатеричной системы счисления в двоичную.

Для этого типа операций существует упрощенный алгоритм-перевёртыш.

Преобразуем цифры шестнадцатеричного числа по Таблице 4 в квартеты.

29A(16) → 0010 1001 1010

Числа со знаком.

Двоичные числа могут быть как со знаком (signed), так и без знака (unsigned). Числа без знака используют все восемь битов для получения значения. Например, 11111111 = 255. Просуммировав значения всех битов, получим максимально возможное значение, которое может хранить байт без знака (255). Для слова без знака это значение будет составлять 65 535. Байт со знаком использует только 7 битов для получения значения, а старший восьмой бит зарезервирован для знака, при этом 0 соответствует положительному значению, а 1 – отрицательному. На представленном ниже рисунке 1.4 показано отображение положительного и отрицательного числа 10.

Читайте также:  Amd athlon 64 x2 ado5200iaa5do характеристики

Знаковый бит

1

Рис.2 Отображение положительногои отрицательного числа 10.

Дополнение до двух.

Чтобы не усложнять процессор, отдельный блок для реализации операции вычитания не делают, эту операцию выполняет блок суммирования. Но перед суммированием отрицательные числа преобразовываются в дополнительное число. Это такое число, которое в сумме с исходным числом дает 0. Например, десятичное –6 будет дополнительным для 6, так как 6 + 6 = 0. Таким образом, вместо операции вычитания А-В процессор суммирует с положительным числом А дополнительное к В : А + (-В). Вместо того, чтобы вычесть 4 из 6, процессор просто складывает -4 и 6.

Когда производится работа с двоичными числами, для дополнительного числа используется термин дополнение до двух(two’scomplement). Также встречается такое определение, какдвоичное дополнение. Например, для двоичного значения 0001 двоичным дополнением до двух будет 1111. Такое число получается из исходного числа после изменения всех единиц на нули, а нулей на единицы и прибавлением к получившемуся числу единицы:

Инвертированное N: 1110

Добавить 1: 1111

Если сложить Nи дополнение до двух кN, то получим 0: 0001 + 1111 = 0000. Операция получения дополнения до двух полностью обратима. Например, для отрицательного числа -10 дополнением до двух будет 10:

Арифметические операции над числами в различных системах счисления.

Арифметические действия над числами в любой позиционной системе счисления производятся по тем же правилам, что и десятичной системе, так как все они основываются на правилах выполнения действий над соответствующими многочленами. При этом нужно только пользоваться теми таблицами сложения и умножения, которые соответствуют данному основанию P системы счисления.

Для выполнения арифметических операций в системе счисления с основанием P необходимо иметь соответствующие таблицы сложения и умножения. Для P = 2, 8 и 16 таблицы представлены ниже.

Данный конвертер переводит числа между наиболее популярными системами счисления: десятичной, двоичной, восьмеричной, шестнадцатеричной.

Система счисления — это способ представления числа. Одно и то же число может быть представлено в различных видах. Например, число 200 в привычной нам десятичной системе может иметь вид 11001000 в двоичной системе, 310 в восьмеричной и C8 в шестнадцатеричной.

Существуют и другие системы счисления, но мы не стали включать их в конвертер из-за низкой популярности.

Для указания системы счисления при записи числа используется нижний индекс, который ставится после числа:
20010 = 110010002 = 3108 = C816

Кратко об основных системах счисления

Десятичная система счисления. Используется в повседневной жизни и является самой распространенной. Все числа, которые нас окружают представлены в этой системе. В каждом разряде такого числа может использоваться только одна цифра от 0 до 9.

Двоичная система счисления. Используется в вычислительной технике. Для записи числа используются цифры 0 и 1.

Восьмеричная система счисления. Также иногда применяется в цифровой технике. Для записи числа используются цифры от 0 до 7.

Читайте также:  Preloader что это андроид

Шестнадцатеричная система счисления. Наиболее распространена в современных компьютерах. При помощи неё, например, указывают цвет. #FF0000 — красный цвет. Для записи числа используются цифры от 0 до 9 и буквы A,B,C,D,E,F, которые соответственно обозначают числа 10,11,12,13,14,15.

Перевод в десятичную систему счисления

Преобразовать число из любой системы счисления в десятичную можно следующим образом: каждый разряд числа необходимо умножить на X n , где X — основание исходного числа, n — номер разряда. Затем суммировать полученные значения.

Перевод из десятичной системы счисления в другие

Делим десятичное число на основание системы, в которую хотим перевести и записываем остатки от деления. Запишем полученные остатки в обратном порядке и получим искомое число.

Переведем число 37510 в восьмеричную систему:

Перевод из двоичной системы в восьмеричную

Для перевода в восьмеричную систему нужно разбить двоичное число на группы по 3 цифры справа налево. В последней (самой левой) группе вместо недостающих цифр поставить слева нули. Для каждой полученной группы произвести умножение каждого разряда на 2 n , где n — номер разряда.

Так же как и в первом способе разбиваем число на группы. Но вместо преобразований в скобках просто заменим полученные группы (триады) на соответствующие цифры восьмеричной системы, используя таблицу триад:

Триада 000 001 010 011 100 101 110 111
Цифра 1 2 3 4 5 6 7

Перевод из двоичной системы в шестнадцатеричную

Разбиваем число на группы по 4 цифры справа налево. Последнюю (левую) группу дополним при необходимости ведущими нулями. Внутри каждой полученной группы произведем умножение каждой цифры на 2 n , где n — номер разряда, и сложим результаты.

Также как и в первом способе разбиваем число на группы по 4 цифры. Заменим полученные группы (тетрады) на соответствующие цифры шестнадцатеричной системы, используя таблицу тетрад:

Тетрада 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
Цифра 1 2 3 4 5 6 7 8 9 A B C D E F

Перевод из восьмеричной системы в двоичную

Каждый разряд восьмеричного числа будем делить на 2 и записывать остатки в обратном порядке, формируя группы по 3 разряда двоичного числа. Если в группе получилось меньше 3 разрядов, тогда дополняем нулями. Записываем все группы по порядку, отбрасываем ведущие нули, если имеются, и получаем двоичное число.

Используем таблицу триад:

Цифра 1 2 3 4 5 6 7
Триада 000 001 010 011 100 101 110 111

Каждую цифру исходного восьмеричного числа заменяется на соответствующие триады. Ведущие нули самой первой триады отбрасываются.

Перевод из шестнадцатеричной системы в двоичную

Аналогично переводу из восьмеричной в двоичную, только группы по 4 разряда.

Используем таблицу тетрад:

Цифра 1 2 3 4 5 6 7 8 9 A B C D E F
Тетрада 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Каждую цифру исходного числа заменяется на соответствующие тетрады. Ведущие нули самой первой тетрады отбрасываются.

Перевод из восьмеричной системы в шестнадцатеричную и наоборот

Такую конвертацию можно осуществить через промежуточное десятичное или двоичное число. То есть исходное число сначала перевести в десятичное (или двоичное), и затем полученный результат перевести в конечную систему счисления.

Ссылка на основную публикацию
Как открыть французский замок
Даже если ключ от двери потерялся или сломался, вы сможете попасть домой. В каждом городе есть службы экстренного вскрытия замков,...
Как отключить антивор касперский на телефоне
Оказывается, для тех, кто использует антивирус Kaspersky Internet Security на Android – это не конец. Ведь в приложении есть прекрасная...
Как отключить безлимитный тариф
Много пользуетесь мобильным интернетом? Не хватает стандартного пакета трафика на тарифе? Решить эту проблему абоненты Билайн могут с помощью услуги...
Как открыть цифрал ccd 2094 без ключа
Стальная дверь с домофоном — отличное средство предотвращения несанкционированного доступа и различных хулиганских действий. Проблема в одном. Жилец квартиры в...
Adblock detector