Какие процессоры поддерживают avx

Какие процессоры поддерживают avx

Advanced Vector Extensions (AVX) — расширение системы команд x86 для микропроцессоров Intel и AMD, предложенное Intel в марте 2008. [1]

AVX предоставляет различные улучшения, новые инструкции и новую схему кодирования машинных кодов.

Содержание

Улучшения [ править | править код ]

  • Новая схема кодирования инструкций VEX
  • Ширина векторных регистров SIMD увеличивается со 128 (XMM) до 256 бит (регистры YMM0 — YMM15). Существующие 128-битные SSE-инструкции будут использовать младшую половину новых YMM-регистров, не изменяя старшую часть. Для работы с YMM-регистрами добавлены новые 256-битные AVX-инструкции. В будущем возможно расширение векторных регистров SIMD до 512 или 1024 бит. Например, процессоры с архитектурой Xeon Phi уже в 2012 году имели векторные регистры (ZMM) шириной в 512 бит [2] , и используют для работы с ними SIMD-команды с MVEX- и VEX-префиксами, но при этом они не поддерживают AVX. [источник не указан 1566 дней]
  • Неразрушающие операции. Набор AVX-инструкций использует трёхоперандный синтаксис. Например, вместо a = a + b <displaystyle a=a+b>можно использовать c = a + b <displaystyle c=a+b>, при этом регистр a <displaystyle a>остаётся неизменённым. В случаях, когда значение a <displaystyle a>используется дальше в вычислениях, это повышает производительность, так как избавляет от необходимости сохранять перед вычислением и восстанавливать после вычисления регистр, содержавший a <displaystyle a>, из другого регистра или памяти.
  • Для большинства новых инструкций отсутствуют требования к выравниванию операндов в памяти. Однако рекомендуется следить за выравниванием на размер операнда во избежание значительного снижения производительности. [3]
  • Набор инструкций AVX содержит в себе аналоги 128-битных SSE-инструкций для вещественных чисел. При этом, в отличие от оригиналов, сохранение 128-битного результата будет обнулять старшую половину YMM-регистра. 128-битные AVX-инструкции сохраняют прочие преимущества AVX, такие, как новая схема кодирования, трехоперандный синтаксис и невыровненный доступ к памяти.
  • Intel рекомендует отказаться от старых SSE-инструкций в пользу новых 128-битных AVX-инструкций, даже если достаточно двух операндов. [4] .

Новая схема кодирования [ править | править код ]

Новая схема кодирования инструкций VEX использует VEX-префикс. В настоящий момент существуют два VEX-префикса, длиной 2 и 3 байта. Для 2-байтного VEX-префикса первый байт равен 0xC5, для 3-байтного — 0xC4.

В 64-битном режиме первый байт VEX-префикса уникален. В 32-битном режиме возникает конфликт с инструкциями LES и LDS, который разрешается старшим битом второго байта, он имеет значение только в 64-битном режиме, через неподдерживаемые формы инструкций LES и LDS. [3]

Длина существующих AVX-инструкций, вместе с VEX-префиксом, не превышает 11 байт. В следующих версиях ожидается появление более длинных инструкций.

Новые инструкции [ править | править код ]

Инструкция Описание
VBROADCASTSS, VBROADCASTSD, VBROADCASTF128 Копирует 32-, 64- или 128-битный операнд из памяти во все элементы векторного регистра XMM или YMM.
VINSERTF128 Замещает младшую или старшую половину 256-битного регистра YMM значением 128-битного операнда. Другая часть регистра-получателя не изменяется.
VEXTRACTF128 Извлекает младшую или старшую половину 256-битного регистра YMM и копирует в 128-битный операнд-назначение.
VMASKMOVPS, VMASKMOVPD Условно считывает любое количество элементов из векторного операнда из памяти в регистр-получатель, оставляя остальные элементы несчитанными и обнуляя соответствующие им элементы регистра-получателя. Также может условно записывать любое количество элементов из векторного регистра в векторный операнд в памяти, оставляя остальные элементы операнда памяти неизменёнными.
VPERMILPS, VPERMILPD Переставляет 32- или 64-битные элементы вектора согласно операнду-селектору (из памяти или из регистра).
VPERM2F128 Переставляет 4 128-битных элемента двух 256-битных регистров в 256-битный операнд-назначение с использованием непосредственной константы (imm) в качестве селектора.
VZEROALL Обнуляет все YMM-регистры и помечает их как неиспользуемые. Используется при переключении между 128-битным режимом и 256-битным.
VZEROUPPER Обнуляет старшие половины всех регистров YMM. Используется при переключении между 128-битным режимом и 256-битным.

Также в спецификации AVX описана группа инструкций PCLMUL (Parallel Carry-Less Multiplication, Parallel CLMUL)

  • PCLMULLQLQDQ xmmreg, xmmrm [rm: 66 0f 3a 44 /r 00]
  • PCLMULHQLQDQ xmmreg, xmmrm [rm: 66 0f 3a 44 /r 01]
  • PCLMULLQHQDQ xmmreg, xmmrm [rm: 66 0f 3a 44 /r 02]
  • PCLMULHQHQDQ xmmreg, xmmrm [rm: 66 0f 3a 44 /r 03]
  • PCLMULQDQ xmmreg, xmmrm, imm [rmi: 66 0f 3a 44 /r ib]

Применение [ править | править код ]

Подходит для интенсивных вычислений с плавающей точкой в мультимедиа-программах и научных задачах. Там, где возможна более высокая степень параллелизма, увеличивает производительность с вещественными числами.

Поддержка [ править | править код ]

Поддержка в операционных системах [ править | править код ]

Использование YMM-регистров требует поддержки со стороны операционной системы. Следующие системы поддерживают регистры YMM:

  • Linux: с версии ядра 2.6.30, [6] released on June 9, 2009. [7]
  • Windows 7: поддержка добавлена в Service Pack 1 [8]
  • Windows Server 2008 R2: поддержка добавлена в Service Pack 1 [8]

Микропроцессоры с AVX [ править | править код ]

  • Intel:
  • Процессоры с микроархитектурой Sandy Bridge, 2011. [9]
  • Процессоры с микроархитектурой Ivy Bridge, 2012.
  • Процессоры с микроархитектурой Haswell, 2013.
  • Процессоры с микроархитектурой Broadwell, 2015.
  • Процессоры с микроархитектурой Skylake, 2015.
  • Процессоры с микроархитектурой Kaby Lake, 2017.
  • Процессоры с микроархитектурой Coffee Lake, 2017.
  • AMD:
  • Процессоры с микроархитектурой Bulldozer, 2011. [10]
  • Процессоры с микроархитектурой Piledriver, 2012.
  • Процессоры с микроархитектурой Steamroller, 2014.
  • Процессоры с микроархитектурой Excavator, 2015.
  • Процессоры с микроархитектурой Zen, 2017.
  • Процессоры с микроархитектурой Zen 2, 2019.

Совместимость между реализациями Intel и AMD обсуждается в этой статье.

Микропроцессоры с AVX2 [ править | править код ]

  • IntelHaswell[11]
  • IntelBroadwell
  • IntelSkylake
  • IntelKaby Lake
  • IntelCoffee Lake
  • AMDExcavator
  • AMD Zen (AMD Ryzen)
  • AMD Zen 2 (AMD Ryzen)

AVX-512 [ править | править код ]

AVX-512 расширяет систему команд AVX до векторов длиной 512 бит при помощи кодировки с префиксом EVEX. Расширение AVX-512 вводит 32 векторных регистра (ZMM), каждый по 512 бит, 8 регистров масок, 512-разрядные упакованные форматы для целых и дробных чисел и операции над ними, тонкое управление режимами округления (позволяет переопределить глобальные настройки), операции broadcast (рассылка информации из одного элемента регистра в другие), подавление ошибок в операциях с дробными числами, операции gather/scatter (сборка и рассылка элементов векторного регистра в/из нескольких адресов памяти), быстрые математические операции, компактное кодирование больших смещений. AVX-512 предлагает совместимость с AVX, в том смысле, что программа может использовать инструкции как AVX, так и AVX-512 без снижения производительности. Регистры AVX (YMM0-YMM15) отображаются на младшие части регистров AVX-512 (ZMM0-ZMM15), по аналогии с SSE и AVX регистрами. [12]

Используeтся в Intel Xeon Phi (ранее Intel MIC) Knights Landing (версия AVX3.1) и Intel Skylake-X. [12]

Будущие расширения [ править | править код ]

Схема кодирования инструкций VEX легко допускает дальнейшее расширение набора инструкций AVX. В следующей версии, AVX2, добавлены инструкции для работы с целыми числами, FMA3 (увеличил производительность при обработке чисел с плавающей запятой в 2 раза [11] ), загрузку распределенного в памяти вектора (gather) и прочее.

Читайте также:  Телевизор не видит зону

Различные планируемые дополнения системы команд x86:

В серверных процессорах поколения Broadwell добавлены расширения AVX 3.1, а в серверных процессорах поколения Skylake — AVX 3.2.

Люди обычно оценивают процессор по количеству ядер, тактовой частоте, объему кэша и других показателях, редко обращая внимание на поддерживаемые им технологии.

Отдельные из этих технологий нужны только для решения специфических заданий и в "домашнем" компьютере вряд ли когда-нибудь понадобятся. Наличие же других является непременным условием работы программ, необходимых для повседневного использования.

Так, полюбившийся многим браузер Google Chrome не работает без поддержки процессором SSE2. Инструкции AVX могут в разы ускорить обработку фото- и видеоконтента. А недавно один мой знакомый на достаточно быстром Phenom II (6 ядер) не смог запустить игру Mafia 3, поскольку его процессор не поддерживает инструкции SSE4.2.

Если аббревиатуры SSE, MMX, AVX, SIMD вам ни о чем не говорят и вы хотели бы разобраться в этом вопросе, изложенная здесь информация станет неплохим подспорьем.

В кратких описаниях ниже упор сделан только на практическую ценность технологий. Пройдя по приведенным ссылкам, можно получить более подробные сведения о каждой из них.

Аббревиатура образована от MultiMedia eXtensions (мультимедийные расширения). Это набор инструкций процессора, предназначенных для ускорения обработки фото-, аудио- и видеоданных. Разработан компанией Intel, используется в процессорах с 1997 года и на момент внедрения обеспечивал до 70% прироста производительности. Сегодня вам вряд ли удастся встретить процессор без поддержки этой технологии. Подробнее.

3DNow!

Технология впервые была использована в 1998 году в процессорах AMD и стала развитием технологии MMX, значительно расширив возможности процессора в области обработи мультимедийных данных. Ее презентацию совместили с выходом игры Quake 2, в которой 3DNow! обеспечивала до 30% прироста быстродействия. Но широкого распространения 3DNow! не получила. Сейчас она заменена другими технологиями и в новых процессорах не используется. Подробнее.

Аббревиатура от от Streaming SIMD Extensions. SIMD расшифровывается как Single Instruction Multiple Data, что значит "одна инструкция — множество данных".

SSE впервые использована в 1999 году в процессорах Pentium ІІІ и стала своеобразным ответом компании Intel на разработанную компанией AMD технологию 3DNow!, устранив некоторые ее недостатки. SSE применяется процессором, когда нужно совершить одни и те же действия над разными данными и обеспечивает осуществление до 4 таких вычислений за 1 такт, чем обеспечивает существенный прирост быстродействия.

SSE используется огромным числом приложений. Процессоров без ее поддержки сегодня уже не встретишь. Подробнее.

Этот набор инструкций был разработан компанией Intel и впервые интегрирован в процессоры Pentium 4 (2000 — 2001 гг.).

Поддержка инструкций SSE2 является обязательным условием использования современного программного обеспечения. В частности, без этого набора команд не будут работать популярные браузеры Google Chrome и Яндекс-браузер. На компьютере без SSE2 также невозможно использовать Windows 8, Windows 10, Microsoft Office 2013 и др. Подробнее.

Набор из 13 инструкций, разработанный компанией Intel и впервые использованный ею в 2004 г. в процессорах с ядром Prescott. Позволяет процессору более эффективно использовать 128-битные регистры SSE.

Инструкции SSE3 заметно упростили ряд DSP- и 3D-операций. Практическая польза от них больше всего ощущается в приложениях, связанных с обработкой потоков графической информации, аудио- и видеосигналов. Подробнее.

SSSE 3

Сокращение от "Supplemental SSE3", что значит "Дополнительный SSE3". Это набор дополнительных инструкций процессора, внедренных компанией Intel в 2006 году в продолжение развития предыдущих наборов команд SSE. По сути, это был четвертый по счету набор инструкций SSE. Но в Intel решили иначе, возможно, посчитав его лишь незначительным дополнением к предыдущему пакету.

Инструкции SSSE3 необходимы для нормальной работы многих современных приложений, в частности программ распознавания речи, используемых алгоритм DNN (Deep Neural Network). Подробнее.

SSE 4.1

Набор инструкций, разработанный компанией Intel. Используется в процессорах с 2006 года.

SSE 4.1 в значительной степени повышает эффективность процессора при компиляторной векторизации обработки данных, работе с трехмерной графикой и в играх, обработке изображений, видеоинформации и другого мультимедийного контента. Подробнее.

SSE 4.2

Набор инструкций процессора, включающий 7 команд обработки строк, подсчета CRC32 и популяции единичных бит, а также работы с векторными примитивами. Впервые использован компанией Intel в 2008 году.

На практике инструкции SSE 4.2 повышают производительность при сканировании вирусов, поиска текста, строковой обработки библиотек (ZLIB, базы данных и др.), обработки 3D информации. Подробнее.

SSE4A (SSE128)

Набор инструкций, используемый в процессорах AMD с 2007 года. Включает всего 4 команды (инструкции, ускоряющие подсчет числа нулевых/единичных битов, комбинированные инструкции маскирования и сдвига, а также скалярные инструкции потоковой записи).

Аналогичные инструкций есть также в наборе SSE 4 (4.1, 4.2.) от Intel, который является значительно более эффективным (в общей сложности 54 инструкции), см. выше. Подробнее.

Расширение системы команд процессора, разработанное в 2008 году компанией Intel с целью ускорения работы и повышения уровня защищенности программ, использующих алгоритм шифрования AES (Advanced Encryption Standard).

В США и некоторых других странах AES является официальным стандартом шифрования. Используется операционной системой Windows и многими популярными программами для защиты конфиденциальной информации (The Bat!, TrueCrypt и др.). Если процессор поддерживает инструкции AES, прирост производительности приложений, использующих этот алгоритм, может достигать 1200 %. Подробнее.

Аббревиатура образована от Advanced Vector Extensions. Это расширение системы команд процессора, разработанное компанией Intel в 2008 году. Оказывает большое влияние на мультимедийные и вычислительные возможности процессора.

Кроме набора новых инструкций, эта технология предусматривает двукратное увеличение размеров SIMD-регистров процессора, благодаря чему в интенсивных вычислениях за каждый такт он может обрабатывать до 2 раз больше информации.

Значительный прирост производительности наблюдается при работе с фото-, видеоконтентом, решении научных задач и др.). Но для этого требуется также использование соответствующей операционной системы и адаптированного программного обеспечения. В Windows поддержка AVX появилась, только начиная с Windows 7 SP1. Подробнее.

AVX 2

Набор инструкций, ставший развитием технологии AVX. Впервые использован в 2013 г. в процессорах Intel на ядре Haswell.

Практическая польза для рядового пользователя — прирост производительности при работе с видео, фотографиями, звуком, а также с программами, использующими алгоритмы распознавания голоса, лиц, жестов (при условии использования соответствующего программного обеспечения). Подробнее.

Читайте также:  Язык программирования обучение с нуля бесплатно

Набор инструкций процессора, ускоряющий операции умножения-сложения чисел с плавающей запятой. Аббревиатура FMA образована от англ. Fused Multiply-Add, что переводится как умножение-сложение с однократным округлением.

Операции умножения-сложения очень распространены и играют важную роль в работе вычислительной техники. Особенно, когда речь идет о цифровой обработке аналоговых сигналов (двоичное кодирование видео, звука и другие подобные операции). В связи с этим, поддержка инструкций FMA внедрена не только в центральные процессоры, но и в графические процессоры многих современных видеокарт. Подробнее.

NX (XD), EVP

Технологии NX (XD) и EVP, не смотря на разные названия, являются одним и тем же — важным компонентом любого современного процессора, обеспечивающим повышенную защиту компьютера от вирусов и хакерских атак, основанных на механизме переполнения буфера.

Названия NX (No Xecute) и XD (eXecute Disable) характерны для процессоров Intel. EVP (Enhanced Virus Protection) — для процессоров AMD. Подробнее.

AMD64, Intel64

AMD64, Intel64, EM64T, x86-64, x64, Hammer Architecture — все эти термины обозначают одно и то же — 64-битную архитектуру центрального процессора, разработанную и внедренную в 2003 году компанией AMD. До этого процессоры были 32-битными.

Для обычного пользователя главным преимуществом 64-битного процессора является возможность использования в компьютере 64-битного программного обеспечения и большого объема оперативной памяти (теоретически, до 16777216 терабайт). Максимальное количество оперативной памяти, которое может адресовать 32-битный процессор — 4 ГБ. Подробнее.

XOP (от англ. eXtended operation — "расширенная операция") — это набор инструкций микропроцессора, повышающих его быстродействие при работе с мультимедиа, а также при решении научных задач.

Инструкции XOP впервые использованы в 2011 году в процессорах AMD архитектуры Bulldozer. В этот набор входит несколько различных типов векторных инструкций, большинство из которых являются целочисленными. Однако, есть среди них также инструкции для перестановки чисел с плавающей запятой и инструкции экстракции дробной части. Подробнее.

HT, SMT

В процессорах Intel технология многопоточности называется Hyper-Threading (HT), в процессорах AMD — Simultaneous MultiThreading (SMT).

Кроме названий, эти технологии отличаются еще и многими аспектами реализации. Однако, суть их одинакова. HT и SMT повышают эффективность использования вычислительных возможностей процессора (в среднем, на 20 — 30 %) за счет параллельного выполнения каждым его ядром двух потоков вычислений. Подробнее.

Аппаратная виртуализация (VT-x, VT-d, AMD-V)

Аппаратная виртуализация значительно расширяет возможности работы компьютера с виртуальными машинами, позволяя использовать гостевые операционные системы изолировано от основной (хостовой) системы.

Кроме того, появляется возможность "проброса" в гостевую систему устройств ввода-вывода, подключаемых к компьютеру через шину PCI и некоторые другие шины (видеокарты, звуковые карты, сетевые адаптеры и др.). Подробнее.

Turbo Boost, Turbo Core

Turbo Boost и Turbo Core — похожие по своей сути технологии, автоматически повышающие тактовую частоту процессора выше номинальной, когда в этом есть необходимость. Turbo Boost используется в процессорах Intel, Turbo Core — в процессорах AMD. В целом, они обеспечивают значительный прирост быстродействия в большинстве приложений.

Несмотря на одинаковое предназначение, Turbo Boost и Turbo Core существенно отличаются. Подробнее.

TXT (англ. Trusted eXecution Technology — технология доверенного выполнения) — разработанная компанией Intel и используемая в ее процессорах технология, обеспечивающая аппаратную защиту компьютера от вредоносных программ.

Это абсолютно новая концепция безопасности. В ее основе лежит эксклюзивное использование части ресурсов компьютера каждым конкретным приложением. Она охватывает практически все подсистемы компьютера: выделение памяти, мониторинг системных событий, связь чипсета и памяти, хранение данных, устройства ввода (клавиатура и мышь), вывод графической информации. Подробнее.

TSX (Transactional Synchronization eXtensions) — набор инструкций многоядерного процессора, разработанный компанией Intel, который повышает эффективность взаимодействия ядер между собой при осуществлении общего доступа к одним и тем же данным и, в конечном счете, увеличивает общую производительность компьютера. Подробнее.

SpeedStep, PowerNow!, Cool’n’Quiet

Принцип действия этих технологий состоит в автоматическом снижении частоты процессора, а вследствие — потребляемой им энергии и выделяемого тепла, в периоды, когда компьютер не выполняет никаких задач или когда сложность этих задач является незначительной.

Это особенно важно для мобильных устройств, расход заряда аккумулятора которых существенно уменьшается. В настольных системах самым ощутимым моментом является снижение шума системы охлаждения процессора. Подробнее.

Memory Protection Extensions — технология, обеспечивающая повышенную защиту компьютера от вирусных и других угроз, использующих механизм переполнения буфера.

Процессор получает возможность дополнительно проверять границы буферов стека и буферов кучи перед доступом к памяти, чтобы приложение, обращающееся к памяти, имело доступ лишь к той ее области, которая ему назначена. Вследствие этого хакеру или вредоносной программе становится значительно сложнее через память "подставлять" процессору свой код. Подробнее.

Software Guard Extensions (SGX) — набор инструкций, разработанный компанией Intel и используемый в ее процессорах, начиная с архитектуры Skylake.

SGX позволяет организовать защищённые участки кода и данных (так называемые "анклавы"), обеспечивающие высокий уровень защиты работающих с ними программ от вредоносных приложений и хакерских атак. Подробнее.

Intel SHA

Intel Secure Hash Algorithm extensions (SHA) — набор инструкций процессора, разработанных компанией Intel для ускорения работы приложений, используемых алгоритмы шифрования SHA. Включает 7 инструкций, 4 из которых ускоряют работу SHA-1, остальные 3 — SHA-256. Ускорение может составлять 150-200 % и более (в зависимости конкретного приложения).

Эти алгоритмы используются в системах контроля версий и электронных подписей, а также для построения кодов аутентификации. SHA-1 является более распространённым и применяется в самых разнообразных криптографических программах. Подробнее.

Advanced Configuration and Power Interface (ACPI) — стандарт, разработанный компаниями HP, Intel, Microsoft, Phoenix и Toshiba. Используется в компьютерной технике с 1996 года, постепенно дополняясь и совершенствуясь. Определяет общий подход к управлению питанием и обеспечивает взаимодействие между устройствами компьютера, его операционной системой и BIOS/UEFI в целях снижения уровня энергопотребления.

Стандарт ACPI предусматривает несколько режимов работы процессора. В зависимости от модели, они могут поддерживаться процессором в полном объеме или только какая-то их часть. Подробнее.

System Management Mode (SMM) — режим, при котором процессор приостанавливает исполнение любого кода (в том числе и операционной системы) и запускает специальную программу, хранящуюся в зарезервированной области оперативной памяти.

Процессор переводится в режим SMM не программным обеспечением, а после поступления сигнала, генерируемого при наступлении определенных событий специальными схемами материнской платы. Нужен для решения некоторых важных задач, таких как обработка ошибок памяти и чипсета материнской платы, защита процессора от перегрева путем выключения компьютера и др. Подробнее.

Читайте также:  Когда выйдет продолжение сериала игра престолов

Dynamic Front Side Bus Frequency Switching (DFFS) — одна из технологий снижения энергопотребления компьютерных систем. Она позволяет операционной системе компьютера, в зависимости от нагрузки, которую он испытывает, понижать частоту системной шины FSB, что влечет за собой также и снижение частоты процессора. Подробнее.

SenseMI

SenseMI — технология, разработанная компанией AMD и впервые использованная в процессорах серии Ryzen. Она представляет собой комплекс из нескольких взаимосвязанных компонентов, обеспечивающих оптимальную производительность и энергоэффективность путем прогнозирования программного кода, а также динамического изменения частоты процессора в соответствии с решаемыми задачами в каждый конкретный момент времени (Smart Prefetch, Neural Net Prediction, Pure Power, Precision Boost, Extended Frequency Range).

Некоторые из упомянутых компонентов, по сути, являются усовершенствованными вариантами технологий, используемых в предыдущих моделях процессоров AMD. Подробнее.

AMD CoolCore

AMD CoolCore — технология, осуществляющая временное отключение неиспользуемых блоков процессора в целях снижения энергопотребления и выделяемого им тепла. Впервые использована в процессорах Phenom. Подробнее.

AMD CoolSpeed

AMD CoolSpeed — технология, разработанная компанией AMD для защиты процессора от перегрева путем понижения частоты и напряжение питания. Подробнее.

AMD Enduro

AMD Enduro — технология, позволяющая переключать компьютер, оснащенный двумя графическими решениями, с одного устройства на другое, в зависимости от решаемых в конкретный момент времени задач. Поддерживается видеокартами AMD, а также гибридными (имеющими встроенное графическое ядро) процессорами этой компании.

Ценной Enduro является для мобильных компьютеров, поскольку позволяет существенно экономить заряд аккумулятора. Подробнее.

BMI, TBM, ABM

Bit Manipulation Instructions (BMI) — наборы инструкций, используемые в процессорах Intel и AMD для ускорения операций, связанных с манипулированием битами.

Операции манипулирования битами чаще всего используется приложениями, предназначенными для низкоуровневого управления устройствами, обнаружения и исправления ошибок, оптимизации, сжатия и шифрования данных. Использование BMI программами значительно ускоряет эти операции (иногда в несколько раз), однако, код программ становится более сложным для написания программистами. Подробнее.

DPM, DDPM

Dynamic Power Management и Dual Dynamic Power Management- технологии автоматического динамического изменения питания процессора. В совокупности с другими энергосберегающими технологиями, они значительно повышают его энергоэффективность, снижая уровень питания в периоды простоя или незначительных загрузок и повышая его, когда это необходимо. Подробнее.

SMEP, SMAP

Supervisor Mode Execution Prevention и Supervisor Mode Access Prevention — технологии, разработанные компанией Intel для защиты компьютера от хакерских атак и других угроз, использующих так называемый "режим супервизора". Подробнее.

F16C — набор инструкций, используемый в процессорах архитектуры x86 для ускорения преобразований между двоичными числами половинной точности (16 bit) и стандартными двоичными числами с плавающей запятой одинарной точности (32 bit).

F16C используется как в процессорах AMD, так и в процессорах Intel, значительно расширяя их возможности в плане работы с мультимедийными данными, а также данными других типов. Подробнее.

k0ttee » 20 сен 2017, 08:27

Сегодня хочу завести разговор на тему, что такое avx инструкции в процессоре, где и для чего они используются.

Среднестатистический покупашка идет в магазин и хочет купить компьютер / ноутбук для работы и для игр. На практике это — помощней и подешевле, чтоб реферат в ворде написать после чего играть.
Что касается процессоров — на полках лежат сердитые пеньки равные по мощности ай-третьим. Неужели i3 это маркетинговый заговор? Неужели Pentium это "такой ай три только дешевле"? И да и нет. А дело вот в чем.

Чтобы написать реферат в ворде — хватит самого дешевого Celeron (причем можно взять "процессор затычку" еще дешевле, если брать его на барахолке с чеком и остатком гарантии).
Чтобы после реферата сыграть во все игры — подойдет Pentium обладающий задатками ай-третьего (2 ядра 4 потока). Для игр AVX-инструкции не обязательны (лишь бы нужные SSE были).

А вот для профессиональных задач, пригодится аппаратная виртуализация и поддержка AVX-инструкций, поэтому — лучше взять минимум ай-третий.

Зачем нужны AVX инструкции

Что входит в ряд профессиональных задач? Как правило, лишенные AVX камни так же лишены и аппаратного ускорения виртуализации.
Разработка под android, которая потребует виртуалку этого самого ведроида (некоторые эмуляторы даже не запустятся, некоторые будут работать уныло сильно загружая ядра).
Пережевывание мультимедийных данных (от обработки фоточек до кодирования видео и запиливания трехмерной графики, так что — уже летсплейщикам стоит раскошелиться на процессор подороже).

В процессоре есть регистры для инструкций.
SSE-регистр 128-битный, а AVX-регистр 256-битный.
Таким образом, чтобы не выносить ничей мозг анатомией камня, скажем просто — 256 не влезет в 128.

Без AVX тоже можно обрабатывать фоточки, жевать видео и пилить три-дэ. Но есть нюансы.
Если по-проще, то старый 8-ядерный Xeon (не умеющий AXV) будет пилить видосы с той же скоростью что современный i3 (умеющий AVX).

У процессора есть конвейер: узнал откуда брать из памяти, взял из памяти, вычислил, отправил результаты в память.
Упрощенно конвейер с и без AVX можно изобразить так.

Как видите — операций во втором случае меньше. Из чего логично предположить, что AVX-считалочка работает быстрее (в каждом вычислительном такте). А раз быстрее в каждом такте — тогда имея меньше гигагерц можно вычислять быстрее.

Еще одна вкусность AVX это дополнительный операнд. Используется не 2 операнда а 3, что так же сокращает конвейер. Допустим мы хотим сложить X и Y.
Код: Выделить всё Обычная операция, где 2 операнда (X=X+Y) заставит перезаписывать один из операндов.
AVX операция, где 3 операнда (Z=X+Y) позволяет записать результат в третий операнд.
Сложна? Ок, давайте бум прощэ.

Пилить видосы имея AVX получится быстрее. Ибо, помимо вышеописанного, добавляется плюшка оптимальной разбивки кадров.
Комп пересчитывает не каждый кадр. Он разбивает кадр на прямоугольники и сравнивает их, а если находится подходящий — использует готовый кусочек.
Тут AVX научился работать с видосиками оптимальнее (кому интересно — почитайте у профессионалов, а я ограничусь красивой картинкой).

Раньше разбивка была — как показано слева. AVX-разбивка умеет более умно — как показано справа.

Чтобы писать реферат в ворде — сойдет вообще любой процессор.
Чтобы после вместо реферата сыграть в игру — подойдет пень с задатками ай-третьего.
Чтобы пилить контент — лучше раскошелиться на ай-третий.

Ссылка на основную публикацию
Как установить проигрыватель html5
HTML5 Video Player – конвертер видеофайлов в новый веб-формат стандарта html5. Разработчик DVDVideoSoft позволяет скачать программу бесплатно. Утилита хоть и...
Как узнать какая система стоит на компьютере
У нас уже есть старая статья о том, как узнать версию Windows, там мы пользовались только одним методом. В этом...
Как узнать какие страницы посещал в интернете
Сервис проверки посещаемости чужого сайта без открытых счетчиков и статистики. Не точность данных Мы не несем отвественности за предоставленные данные....
Как установить прослушку на телефон жены бесплатно
Как грамотно прослушать телефон жены Хотите прослушивать телефон жены, чтобы проверить ее на верность? Нужны звонки и переписка, чтобы уберечь...
Adblock detector