Найти дивергенцию и ротор векторного поля

Найти дивергенцию и ротор векторного поля

Ротор векторного поля — вектор, проекция которого на каждое направление равна пределу отношения циркуляции векторного поля по контуру L плоской площадки ΔS, перпендикулярной к этому направлению, к величине этой площадки, когда размеры площадки стремятся к нулю, а сама площадка стягивается в точку:

.

Нормаль к площадке направлена так, чтобы при вычислении циркуляции обход по контуру L совершался против часовой стрелки.

В трёхмерной декартовой системе координат вычисляется следующим образом:

Для удобства запоминания можно условно представлять ротор как векторное произведение:

где i, j и k — единичные орты для осей x, y и z соответственно.

Векторное поле, ротор которого равен нулю в любой точке, называется потенциальным (безвихревым).

Физическая интерпретация

По теореме Коши-Гельмгольца распределение скоростей сплошной среды вблизи точки О задаётся уравнением

где — вектор углового вращения элемента среды в точке О, а — квадратичная форма от координат — потенциал деформации элемента среды.

Таким образом, движение сплошной среды вблизи точки О складывается из поступательного движения (вектор ), вращательного движения (вектор ) и потенциального движения — деформации (вектор ). Применяя к формуле Коши—Гельмгольца операцию ротора, получим, что в точке О справедливо равенство и, следовательно, можно заключить, что когда речь идет о векторном поле, являющемся полем скоростей некоторой среды, ротор этого векторного поля в заданной точке равен удвоенному вектору углового вращения элемента среды с центром в этой точке.

Например, если в качестве векторного поля взять поле скоростей ветра на Земле, то в северном полушарии для антициклона, вращающегося по часовой стрелке, ротор будет направлен вниз, а для циклона, вращающегося против часовой стрелки — вверх. В тех местах, где ветры дуют прямолинейно и с одинаковой скоростью, ротор будет равен нулю (у неоднородного прямолинейного течения ротор ненулевой).

Читайте также:  Как сделать таймер в паскале

Основные свойства

Следующие свойства могут быть получены из обычных правил дифференцирования.

  • Линейность:

для любых векторных полей F и G и для всех вещественных чисел a и b.

  • Если — скалярное поле, а F — векторное, тогда:

  • Дивергенция ротора равна нулю:

или

При этом верно и обратное: если поле F бездивергентно, оно есть поле вихря некоторого поля G:

  • Если поле F потенциально, его ротор равен нулю (поле F — безвихревое):

Верно и обратное: если поле безвихревое, то оно потенциально:

для некоторого скалярного поля

  • Теорема Стокса: циркуляция вектора по замкнутому контуру, являющемуся границей некоторой поверхности, равна потоку ротора этого вектора через эту поверхность:

Ссылка на основную публикацию
Назовите основные черты информационного общества
Этапы развития информационного общества. В развитии человечества существуют четыре этапа, названные информационными революциями, которые внесли изменения в его развитие. 1....
Мтс коннект как проверить трафик
Комплект для подключения к интернету от МТС Коннект 4 – это оптимальное для многих пользователей решение. С его помощью можно...
Мтс личный кабинет регистрация по номеру телефона
Для получения логина и пароля отправьте SMS-сообщение с текстом ЛОГИН на номер 7888. При желании, вы можете изменить логин сразу...
Назовите современные типы операционных систем
Когда вы включаете свой компьютер, то первым делом ждете, когда в оперативную память загрузится операционная система. И только потом обращаетесь...
Adblock detector